پژوهش های بذر ایران، جلد ۶، شماره ۲، صفحات ۱۱۱-۱۲۳

عنوان فارسی کمی‌سازی اثر پرایمینگ بذر کلزا (Brassica napus) رقم ظفر در واکنش به دما با استفاده از مدل‌های رگرسیونی غیرخطی
چکیده فارسی مقاله


چکیده مبسوط
مقدمه: دما یکی از عوامل اولیه مهم کنترل کننده جوانه‌زنی می‌باشد. امروزه شیوه پیش‌تیمار بذر به عنوان عامل بهبود دهنده جوانه‌زنی و استقرار تحت تنش‌های محیطی معرفی شده است. با استفاده از مدل‌های رگرسیون غیرخطی می‌توان پاسخ جوانه‌زنی بذر به دما و پرایمینگ بذر را کمی‌سازی کرد؛ بنابراین، این تحقیق به‌منظور بررسی اثر دما و پرایمینگ بر جوانه‌زنی و تعیین دمای کاردینال جوانه‌زنی (دمای پایه، مطلوب و بیشینه جوانه‌زنی) بذر کلزا به اجرا درآمد.
مواد و روش‌ها: تیمارهای آزمایشی شامل سطوح مختلف پرایمینگ بذر (بذر بدون پرایمینگ، پرایمینگ با آب، اسید جیبرلیک 50 و 100 میلی‌گرم در لیتر) و دماهای مختلف (5، 10، 15، 20، 25، 30، 35 و 40 درجه سلسیوس) بود. با استفاده از مدل لجستیک 3 پارامتره، جوانه‌زنی بذر کلزا به سطوح مختلف دما و پرایمینگ بذر کمی‌سازی شد و درصد و زمان رسیدن به 50 درصد جوانه‌زنی به‌دست آمد. جهت کمی‌سازی واکنش سرعت جوانه‌زنی بذر کلزا به دما از 3 مدل رگرسیون غیرخطی دو تکه‌ای، دندان مانند و بتا استفاده شد. جهت مقایسه مدل‌ها و تعیین مناسب‌ترین مدل از شاخص ریشه میانگین مربعات، ضریب تببین، ضریب تغییرات و خطای استاندارد برای درصد جوانه‌زنی مشاهده شده در مقابل جوانه‌زنی واقعی استفاده شد.
یافته‌ها: نتایج نشان داد که دما و پرایمینگ علاوه بر درصد جوانه‌زنی بر سرعت جوانه‌زنی نیز اثر گذار بود. همچنین نتایج نشان داد که با افزایش دما تا دمای مطلوب، درصد و سرعت جوانه‌زنی افزایش یافت و استفاده از تیمار پرایمینگ بذر، درصد و سرعت جوانه‌زنی را افزایش داد. در مقایسه 3 مدل استفاده شده با توجه به پارامترهای آماری مناسب‌ترین مدل جهت تخمین دماهای کاردینال کلزا برای تیمار بدون پرایمینگ مدل دوتکه‌ای و برای تیمار پیش‌انداز شده با اسید جیبرلیک 100 میلی‌گرم در لیتر و آب مدل دوتکه‌ای و دندان مانند و برای تیمار پیش‌انداز شده با اسید جیبرلیک 50 میلی‌گرم در لیتر مدل دندان مانند بود. نتایج نشان داد که دمای پایه برآورد شده با استفاده از مدل دوتکه‌ای برای بذر بدون پرایمینگ، پرایمینگ با آب، پرایمینگ با اسید جیبرلیک 50 و 100 میلی‌گرم در لیتر به‌ترتیب 54/3، 57/2، 34/2 و 34/2 درجه سلسیوس و با استفاده از مدل دندان مانند به‌ترتیب 34/3، 45/2، 21/2 و 83/2 درجه سلسیوس بود. دمای مطلوب با استفاده از مدل دوتکه‌ای به‌ترتیب 62/24، 23/23، 69/23 و 38/24 درجه سلسیوس و با استفاده از مدل بتا 18/27، 66/27، 87/27 و 11/27 درجه سلسیوس، دمای مطلوب تحتانی و فوقانی با استفاده از مدل دندان مانند، 01/20 و 62/19، 25/16 و 87/19، 81/28 و 38/27 و 58/29 و 31/27 درجه سلسیوس، دمای سقف با استفاده از مدل دو تکه‌ای 07/40، 52/40، 4/40 و 56/40 و با استفاده از مدل دندان مانند 17/40، 35/40، 61/39 و 91/40 درجه سلسیوس برآورد شد.
نتیجه‌گیری: استفاده از مدل‌های رگرسیون غیرخطی (دو تکه‌ای، دندان مانند و بتا) جهت کمی‌سازی پاسخ جوانه‌زنی بذر کلزا به سطوح مختلف پرایمینگ بذر و دماهای مختلف دارای نتایج قابل قبولی بود؛ بنابراین با استفاده از خروجی این مدل‌ها در دماهای مختلف می‌توان سرعت جوانه‌زنی را در تیمارهای مختلف پیش‌بینی نمود.

جنبه‌های نوآوری:
  1. اثر دما و پرایمینگ بر جوانه‌زنی بذر کلزا بررسی شد.
  2. دامنه دمایی جوانه‌زنی بذر کلزا تحت شرایط استفاده از تیمار پرایمینگ بذر تغییر می‌یابد.
کلیدواژه‌های فارسی مقاله پرایمینگ بذر، جوانه‌زنی، دماهای کاردینال، کلزا، مدل‌های رگرسیون غیرخطی

عنوان انگلیسی Quantification of the Priming Effect of Canola (Brassica napus cv. Zafar) Response to Temperature Using Nonlinear Regression Models
چکیده انگلیسی مقاله


Extended abstract
Introduction: Temperature is one of the primary environmental regulators of seed germination. Seed priming technique has been known as a challenge to improving germination and seedling emergence under different environmental stresses. Quantification of germination response to temperature and priming is possible, using non-liner regression models. Therefore, the objective of this study was to evaluate the effect of temperature and priming on germination and determination of cardinal temperatures (base, optimum and maximum) of Brassica napus L.
Material and Methods: Treatments included priming levels (non-priming, priming with water, gibberellin 50 and 100 mg/l) and temperature (5, 10, 15, 20, 30, 35 and 40 °C). Germination percentage and time to 50% maximum seed germination of Brassica napus L. were calculated for different temperatures and priming by fitting 3-parameter logistic functions to cumulative germination data. For the purpose of quantifying the response of germination rate to temperature, use was made of 3 nonlinear regression models (segmented, dent-like and beta). The root mean square of errors (RMSE), coefficient of determination (R2), CV and SE for the relationship between the observed and the predicted germination percentage were used to compare the models and select the superior model from among the methods employed.
Results: The results indicated that temperature and priming were effective in both germination percentage and germination rate. In addition, the results showed that germination percentage and rate increase with increasing temperature to the optimum level and using priming. As for the comparison of the 3 models, according to the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), CV and SE, the best model for the determination of cardinal temperatures of Brassica napus L. for non-primed seeds was the segmented model. For hydro-priming and hormone-priming with 50 mg/l GA, the best models were segmented and dent-like models and for hormone-priming with 100 mg/l GA,  the dent-like model was the best. The results showed that for non-priming, hydropriming with water, gibberellin 50 and 100 mg/l treatments, the segmented model estimated base temperature as 3.54, 2.57, 2.34 and 2.34 °C and dent-model estimated base temperature as 3.34, 2.45, 2.21 and 2.83 °C, respectively. The segmented model estimated optimum temperature as 24.62, 23.23, 23.69 and 24.38 °C. The dent-model estimated lower limit of optimum temperature and upper limit of optimum temperature as 20.01, 19.62, 16.25, 19.87 and 28.81, 27.38, 29.58 and 27.31 °C.
Conclusion: Utilizing non-liner models (segmented, dent-like and beta) for quantification of germination of Brassica napus L. response to different temperatures and priming produced desirable results. Therefore, utilizing the output of these models at different temperatures can be useful in the prediction of germination rate in different treatments.
 
 
Highlights:
1-The effect of priming on germination of Brassica napuswas investigated.
2-The temperature range of rapeseed germination of Brassica napus changes with the use of seed priming.
کلیدواژه‌های انگلیسی مقاله Brassica napus, Cardinal temperatures, Germination, Non-liner regression models, Priming

نویسندگان مقاله سپیده نیکومرام | Sepideh Nikoumaram
دانشگاه تهران

نعیمه بیاتیان | Naeimeh Bayatian
University of Birjand
دانشگاه بیرجند

امید انصاری | Omid Ansari
Gorgan University of Agricultural Sciences and Natural Resources
دانشگاه علوم کشاورزی و منابع طبیعی گرگان


نشانی اینترنتی http://yujs.yu.ac.ir/jisr/browse.php?a_code=A-10-431-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده اکولوژی بذر
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات